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G R A V I T A T I O N A L  W A V E S  O N  A B O U N D E D  A R E A  

O F  A F L U I D  S U R F A C E  

V. P. Zhi tn ikov UDC 535.5 

A good deal of papers are devoted to the investigation of ponderable fluid flows. For instance, Kiselev 
[1] has solved the problem of ponderable fluid flow over a step in a linear approximation. The mechanism 
of wave ampli tude change behind the step was established. A nonlinear problem of this type has also been 
studied [2]. Of special interest is the conclusion that  in the case of a symmetric step the free flow surface is 
symmetric. Maklakov [3] obtained a numerical and analytical solution of the problem of the waves originating 
at the bot tom behind a step and under the surface behind a vortex. 

The problem of ponderable fluid flow from under a gate was solved by the small-parameter methods 
[4] and in a linear approximation [5]. The exact solution was found, and its asymptotic behavior was studied. 
The wavelengths and phases were determined at a sufficient distance from the separation point. 

Unlike the above problems, in the case of cavitational flow past obstacles, the free boundary consists, 
as a rule, of two finite-length regions. However, no solutions of the wave type have been found in papers [6-8], 
which are devoted to the investigation of cavitational flows of a ponderable fluid. Nevertheless, the possibility 
of existence of such solutions on a free surface of bounded length cannot be ruled out. 

It is well known that  the problem of capillary (as well as ponderable) fluid flow admits solutions of the 
surface-wave type. Such solutions were obtained numerically on a bounded surface [9]. Below, we apply the 
same procedure to investigate one of the problems of ponderable fluid flow with a bounded free-surface area. 
In addition, for small-amplitude waves, we draw a comparison with the solution of the linear problem, which 
allows us to confirm the reliability of the results obtained. 

1. S t a t e m e n t  of  t h e  P r o b l e m .  Let us consider the problem of semibounded flow of an ideal, 
nonviscous, incompressible, ponderable fluid along a wall consisting of parts DA and BD I (set at an angle to 
each other) with a slit AB 2l wide between them (Fig. la). The tilt angle of the fluid velocity vector to the 
x axis is O = OA = f i r  on boundary DA, and 0 = --OA on boundary BD ~. The parameters of the free fluid 
surface ACB are related by the Bernoulli integral. At a constant pressure above the surface this integral has 
the form 

( v )  2 2 y  =cons t ,  Fr v2, (1.1) 

where v is the absolute value of the fluid velocity vector; v0 is its value, for example, at point A; g is the 
downward free fall acceleration; y is the ordinate of a point on the free surface; Fr is the Froude number. 

We solve the problem by the Levi-Civita method. For this purpose, we map the flow region conformally 
onto the upper half-plane ~ with the excluded semicircle of unit radius (Fig. lb). Then, the complex potential 
is 

(a is a positive constant). 
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Let us consider the Zhukovskii function 
1 dW 

w = i l n ~  = 0 + i ' r  
vo dz 

where 0 is the angle between the velocity vector and the z axis, r = ln(v/vo). Substituting 0 and r into (1.1) and 
differentiating the expression obtained at ( = e/~ (0 ~< cr ~< 7r) with respect to ds = (1/v)d~v = (a/v)sin g&r 
(s is the arc abscissa reckoned from point A), we obtain a differential equilibrium equation for the free 
ponderable fluid surface: 

3r dr ag a (1.3) 
e ~- -~+~es in0-s incr=0,  z e -  v3 Fry0/" 

2. C o n s t r u c t i o n  of  t h e  Solu t ion .  We seek a solution of the problem that is symmetric about the 
vertical axis and satisfies the boundary conditions in the form of the function 

Z = - b  q- C2rn+lr  - ( 2 r e + l )  r + iR (2.1) 

(b, R, and c2m+1 are real constants). 
Assuming the continuous change of the angle O(s) in going from the wall to the free surface, we should 

require that the condition z = O((  5= 1) 2 be fulfilled in the vicinity of points A and B. This is true if the 
derivative 

e-~ = - (1 - 28) (  - ~ (2m + 1 + 2~)c2,~+1U (~m+l) r  
m~---0 

equals zero at ~ = 5=1. Therefore, the coefficients c2,n+1 must satisfy the equation 

(1 - 28)  - ~ (2m + 1 + 2~)c2m+~ = o. (2.2) 
m=0 

For this problem the Zhukovskii function can be given by the formula 

w(~) = ~"  + i2~ln~ - i ln (1 - 28) - ~- ~ (2m + 1 + 2~)c2m+1~ -(2m+1) 
m=0 

+i  In + wo(~) + JR1 = ~ r  + i2r In ( - i ln 1 + ~ d2m( -2m + w0(() + JR2 (2.3) 
m = l  

[in the latter expression condition (2.2) is taken into account]. The function w0(() is used to isolate the solution 
singularities in various limiting cases. In the main case (with a smooth free boundary) we have coo(() = 0. 
The real constants R1 and R2 are chosen from the condition that the function r(~) = ln(v/vo) is equal to 
zero at a fixed point (here, at point A). 

3. N u m e r i c a l  So lu t ion .  We solve the problem numerically by the collocation method in much the 
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same manner as in [9]. Here the coefficients c2m+l (m  = O, N )  in the sum (2.1) are sought for. They are 
determined from conditions (1.1) or (1.3), which are stipulated on a discrete set of points ( = e i~"~ and 
o',,, = z m / ( 2 N ) .  A F r  value is set in a certain range whose boundaries depend on ;3. 

When Fr = ~ ,  the solution corresponds to inponderable fluid flow. In this case, an exact solution can 
be obtained if we assume that in (2.3) 

1 1+2;3 
cl 2 1 - 2;3 ' c2,=+1 = 0, m = 1 , . . . ,  oo. (3.1) 

The free-surface shapes for ;3 = 1/6 are presented in Fig. 2. The solution corresponding to Fr = cr is 
shown as curve 1. Curves 2 and 3 correspond to 1/Fr = - 8  and -128 (the gravity vector points upward for 
Fr < 0). As 1/Fr -+ - 0 %  the free surface points approach a straight line y = 0. In the limit, we have flow 
past a polygon formed by the wails DA, BD ~ and the horizontal segment AB. 

For solutions with Fr > 0 (curves 4 and 5 correspond to 1/Fr = 0.9 and 0.89), a limiting solution exists 
too. As it is approached, the height of the point C and the free-surface curvature at this point grow. In the 
limit, the curvature becomes infinite, and a break with angle change A0 = -7r/3 is formed on the free surface 
(similar to a periodic Stokes wave). 

The free-surface shapes are shown for ;3 = 0 in Fig. 3. In this case, a trivial solution is possible 
for all Froude numbers (including Fr ~< 0); however, for Fr > 0 other solutions also exist. In particular, 
configurations similar to those considered above for/3 = 1/6 are shown in the lower part of the figure (curves 
1 and 2 correspond to 1/Fr = 1.575 and 2). With decreasing Froude number, the ordinates of the free surface 
points decrease, and at 1/Fr = 2.7509 the solution degenerates into the trivial. Nevertheless, as Fr decreases 
further, the solution branch under consideration continues, and the ordinates of the surface points become 
negative (curves 3-5 are calculated for 1/Fr = 3, 6, and 50). As Fr ~ 0 (that is, the velocity at point A tends 
to zero), there is an inflection of the streamline at point A with angle change AO = -~r/3 (curve 6). 

4. L i m i t i n g  Cases .  To calculate the above-considered limiting configurations of the Stokes-wave type 
and the others, we should change the form of the function w0(() to take into account the singularities (breaks) 
appearing on the free surface. Thus, we seek the Zhukovskii function of the limiting solution of the first type 
with a surface break at point C (Fig. 3, curves 1 and 7) in the form of (2.3), where 

i U + 1 (4.1) 
~0(r = 5 In 2(------7- 

It should be noted that by substituting (4.1) into (2.3) we obtain an exact solution for ~ = 1/6 if we 
assume that d 2 m = O  (m>~ 1): 

w = ~ + ~ l n  2----(-- 

This solution represents flow over a corner. Substituting it into (1.3), we find that ae = 2/3; therefore, 
Fr = 2/V~. For/7 # 1/6, the problem is solved numerically and the parameter a~ (or Fr) is included among 
the desired parameters. 
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Figure 4 presents the ordinate of point C as a function of the reciprocal of the Froude number (1/Fr) 
for different solution types and various fl (curves 1-7 for fl = 0, 1/200, 1/24, 1/12, -1/200,  - I / 2 4 ,  and -1 /6 ,  
respectively). The limiting solution of the (4.1) type is shown as dots I. 

The limiting solution of the second type with streamline inflections at points A and B (Fig. 3, curve 
6) can be obtained if we assume that 

2 r _ 1 (4.2) 
w0(r = i5 In 2r 2 

In this case, any nonzero-velocity point, for instance, point C, may be taken as v0. In Fig. 4, the limiting 
values of yo/l with 1/Fr ---r cx~ correspond to the solutions of the (4.2) type. 

It can be easily verified that for fl = - 1 / 6  functions (2.3) and (4.2) at d2m = 0 (m >~ 1) are exact 
solutions of the problem 

a- i 2 ~2--1 8 
w = - ~ + 5 1 n r  ---~ , a ~ = 5 .  (4.3) 

In the same way for fl = 1/3 the function 

7r 2 r _ 1 (4.4) 
o J = ~ + ~ i l n  2r 

is a limiting solution of the problem for a~ --+ c~. In this case the free boundary of the flow is a segment of a 
horizontal straight line. The existence of a set of exact solutions simplifies the verification and estimation of 
the accuracy of numerical methods. 

The third type of the limiting solutions is characterized by a free-surface break at some point between A 
and C (Fig. 3, curves 10, 11, and 14). Let the point r = e iao be the image of this point on the parametric 
surface. Then, for this solution, we have 

i (r __ e2hro)(r _ e-2io-o) 
w0(~) = ~ In 4~ 4 (4.5) 

In the numerical solution of the problem in this case, a~ and or0 are included in the parameters sought. 
From Fig. 4 one can judge the existence of different solution branches, each ending with limiting 

solutions. For example, for fl = 0 (Fig. 4, curves 1), the first branch ends with the point corresponding to the 
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limiting case of the first type (1/Fr = 1.575) on one side and has an asymptotic solution of the second type 
(1/Fr = co) on the other side. This branch corresponds to curves 1-6 in Fig. 3. 

The second solution branch with/3 = 0 (Fig. 3, curves 7-10 for 1/Fr = 9.5, 8, 3.8, and 3.6, respectively) 
is bounded below (with respect to the parameter 1/Fr) by a limiting solution of the third type (dots III in 
Fig. 4) and above by a first-type solution. It should be noted that the limiting solutions of the first type 1 
and 7 differ in the sign of the surface point ordinates in the vicinity of point A. 

There also exist other solutions at /3 = 0, in particular, those shown in Fig. 3 as curves 11-14 for 
1/Fr = 14, 12, 7, and 5.4, respectively. 

5. So lu t ions  w i t h  a Wave-Like  B o u n d a r y  Shape .  L inea r  A p p r o x i m a t i o n .  The numerical 
investigation has shown that there is a sequence of solutions with increasing number of crests and troughs. 
Each solution is defined in a certain interval of Fr values. For solutions with two and more crests, the boundary 
values of these intervals correspond to the limiting solutions of the third type considered above. 

The problem solutions with small ordinate values admit of a linear approximation for /3 = 0. To 
verify the numerical results, we have compared them with the analytical solutions found from the asymptotic 
dependences in [5]. 

According to [5], the surface shape of a jet flowing from under a horizontal gate (with/~ = 0, l = oo) 
can be described, when x --+ co, by the function 

O(x) = Asin 27r + , ,~ = 2~r ~~ (5.1) 
g 

(z is reckoned from the gate edge). 
We can go over to the problem with a finite free-surface length by analogy with [8] by specular reflection 

of a flow region with a gate relative to the vertical straight line passing through any point on the free surface 
where O(z) = 0. Such an operation is valid because, according to [5], the quantity w(z) approaches its limiting 
value w ( ~ )  = i ln(vo/voo) sufficiently rapidly with the flow depth. In this connection, one should expect that 
the gate affects only a small free-surface region which is the nearest to the gate edge. 

Thus, by moving the vertical axis of symmetry to different points xi where 0(xi) = 0, we can obtain 
configurations which differ in the number of waves on the free surface. In this case, taking into account the 
phase shift by - r r / 8  in (5.1), one can easily find the relationship between the slit length 21, the wavelength ~, 
and the number n of waves 

2 1  = = a  - = ( =  - 
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TABLE 1 

n i /Vr  l /Fr*  
1 2.749 2.751 
2 5.891 5.892 
3 9.032 9.030 
4 12.174 12.173 

Thus, we obtain a discrete series of Froude numbers corresponding to different n 

1 
Ft.  - ~r (n-  l i8 )"  (5.2) 

Table 1 gives the values of 1/Frn and also the values of 1/Fr* that  are calculated in solving the nonlinear 
problem for n = 1 , . . . ,  4, corresponding to the points of intersection of the x axis and the curves yc(1/Fr)  for 
/3 = 0 (Fig. 4). The results calculated by different methods are seen to be very close. 

Thus, the numerical analysis of the problem of ponderable fluid flow along a wall with a slit has shown 
that, for Fr > 0, there is a series of solutions with a growing number of waves on the free surface. For solutions 
with/7 = 0 and small wave amplitudes we have obtained a formula which allows us to determine the Ft,  
values corresponding to each solution with sufficiently high accuracy. 

For Fr > 0, with increasing number of waves (Fr --+ 0), the free surface points have been demonstrated 
to approach the straight line segment AB. However, the wave front steepness, generally speaking, does not 
decrease in this case. In particular, there is a series of solutions of the Stokes-wave type. For Fr < 0, in the 
limit Fr ~ 0, the free surface also turns to a horizontal straight line segment. However, for Fr < 0, the waves 
do not arise. 

Therefore, we may anticipate that waves on the ponderable fluid surface mac also exist in other cases, 
for instance, in cavitational flows with a lateral gravity. In this case, waves can arise only on the lower free 
surface because Fr < 0 on the upper free surface. 
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